Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water

نویسندگان

  • Lili Song
  • Bo Zhu
  • Stephen Gray
  • Mikel Duke
  • Shobha Muthukumaran
چکیده

This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO₂ concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO₂ photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO₂ particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance of Hybrid Photocatalytic-Ceramic Membrane System for the Treatment of Secondary Effluent

Evaluation of an advanced wastewater treatment system that combines photocatalysis with ceramic membrane filtration for the treatment of secondary effluent was undertaken. The results showed that, after photocatalysis and ceramic membrane filtration, the removal of dissolved organic carbon and UV254 was 60% and 54%, respectively, at a concentration of 4 g/L of TiO₂. Dissolved organic matter (DO...

متن کامل

Development of Hybrid Ultrafiltration Combined with Both Flocculation and Adsorption Treatments for Advanced Removal of Humic Substances

Currently with the progression of the pollution in water sources, considerable attention has been given to the application of membrane filtration technology using microfiltration or ultrafiltration membranes to the surface water treatment as an alternative to conventional coagulation sedimentation and sand filtration. The microfiltration and ultrafiltration membranes are appropriate for complet...

متن کامل

Removal of natural organic matter by ultrafiltration with TiO2-coated membrane under UV irradiation.

This study investigates the performance of ultrafiltration (UF) by membranes coated with titanium dioxide (TiO2) photocatalyst under ultraviolet (UV) illumination in removing natural organic matter (NOM) and possibly in reducing membrane fouling. Experiments were carried out using heat-resistant ceramic disc UF membranes and humic acids as model substances representing naturally occurring organ...

متن کامل

Photocatalysts in Polysulfone Membrane for the Removal of Humic Acid: The Effects of PVP and PVA on Membrane Morphology, Separation Performance and Catalytic Hindrance

Photocatalytic membranes exhibit great potential for water treatment since they combine the filtration and photo degradation in a single unit. Although blending photocatalytic nanoparticles into polymeric thin film remains the simplest method to prepare the photocatalytic membrane, the entrapped photocatalyst showed less catalytic activity due to the agglomeration and shielding effects in the p...

متن کامل

N-Doped TiO2-Coated Ceramic Membrane for Carbamazepine Degradation in Different Water Qualities

The photocatalytic degradation of the model pollutant carbamazepine (CBZ) was investigated under simulated solar irradiation with an N-doped TiO₂-coated Al₂O₃ photocatalytic membrane, using different water types. The photocatalytic membrane combines photocatalysis and membrane filtration in a single step. The impact of each individual constituent such as acidity, alkalinity, dissolved organic m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016